CHAPTER 10.17

Electrorefining

Michael S. Moats and Michael L. Free

Electrorefining is the purification of metal by the simultaneous
electrolytic dissolution of impure metal and the electrodeposi-
tion of the same metal at a higher purity level. Electrorefining
is often critical to meeting final purity specifications for metals
such as copper, gold, lead, and silver that are smelted or made
into a moderately pure precursor material. Electrorefining
is also important to many industries, such as the electronics
industry, that rely on high-purity metals.

The general background information that is discussed in
Chapter 10.16, “Electrowinning,” also applies to electrorefin-
ing. However, there are several key differences between elec-
trowinning and electrorefining. The most important difference
is that in electrorefining the anode consists of the metal that
is to be refined. Correspondingly, the reaction at the anode is
primarily metal dissolution in electrorefining instead of water
oxidation, which generates bubbles and acid mist, at relatively
inert anodes in electrowinning. Another key difference is
the much lower energy requirement and higher current effi-
ciency for electrorefining than for electrowinning. The use of
anodes with inclusions that can become suspended particles is
another important aspect of electrorefining that is not present
in electrowinning,

Figure 1 shows the relationship between electrochemi-
cal potential and the logarithm of the absolute value of the
current density for an electrorefining scenario. The applied
potential or voltage for electrorefining is as much as one order
of magnitude lower than that for electrowinning. Thus, the
corresponding energy requirement for electrorefining is much
lower than for electrowinning. The main difference is the
absence of a cell voltage difference between the anode and
cathode half-cell reactions. The other difference is the absence
of a relatively large overvoltage needed to drive the water oxi-
dation reaction that is often utilized for electrowinning but not
electrorefining.

The anodes used in electrorefining contain impurities that
are distributed between the atoms of the main metal as inter-
stitial impurity atoms based on their solubility in the metal
when the metal solidifies. Impurity atoms that are present at
levels higher than their solubility limit in the main metal are
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Figure 1 Relationship between potential and current density
for an electrorefining cell

also found in separate crystals of a wide variety of second-
ary or tertiary phase compounds. Consequently, examination
of anode cross-sections using scanning electron microscopy
reveals a variety of inclusions that are made up of the impurity-
bearing compounds as illustrated in Figures 2 and 3.

Anode inclusions are typically only a few micrometers
in diameter. As the surrounding matrix of the main metal is
electrochemically forced to dissolve during the electrorefin-
ing process, these inclusions are dissolved in the electrolyte,
released into solution, or form a layer of particles that often
adheres to the anode. The released particles are referred to as
slimes because they form a fine sludge of fine particles that is
often “slimy.” The layer of adhering slimes is often referred to
as a slimes layer. Because the slimes consist of microscopic
particles, a significant portion of slimes remaining in suspen-
sion become available to be transported to and incorporated
in the cathode as impurity particles unless they are retained
inside of anode bags, remain in the slimes layer, or settle to
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Figure 2 SEM image of a silver anode with gold- and copper-
based inclusions
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Figure 3 SEM image of a silver anode with gold-, copper-,
and selenium-based inclusions

Figure 4 SEM images of copper anode slimes

the bottom of the cell. SEM images of slimes generated dur-
ing the dissolution of commercial copper anode are shown in
Figure 4. These images reveal the presence of cuprous sele-
nide (Cu,Se) rings and spheres, a kupferglimmer platelet, lead
sulfate (PbSO,) crystals, and silver crystallites.

In copper and lead electrorefining, anode bags are not
normally used. In silver and nickel refining, anode bags are
commonly used. In most cases, a significant portion of the
slimes particles that are generated either fall to the bottom of
the cell (or anode bag) where they are periodically collected
or remain in adherent slimes layers attached to the anode.
However, residual suspended slimes particles are often a
major source of cathode contamination.

COMMERCIAL PRACTICE
The electrorefining of high-purity metals has been practiced
commercially for cobalt, copper, gold, indium, lead, nickel,

silver, and tin. Copper is the largest tonnage metal that is
electrorefined. As such, industrial aspects of copper electro-
refining will be discussed in detail. Lead, nickel, silver, and
gold will also be discussed in this chapter.

Copper
Most of the world’s refined copper is produced by electrorefin-
ing. The source material for electrorefineries is both primary
ore and recycled scrap. Following pyrometallurgical process-
ing, fire-refined blister copper is cast into anodes, which are
fed into the electrorefinery. These anodes are electrolytically
dissolved into a solution of primarily copper sulfate and sul-
furic acid. Simultaneously with anode dissolution, copper is
electrodeposited at the cathode. Cathodes are harvested and
either sent to market or to a downstream processing facility.
Copper electrorefining operating data has been col-
lected periodically and reported every three to four years at
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international copper conferences since 1987. Detailed operat-
ing data from seven refineries collected in 2013 are presented
in Table 1 (Moats et al. 2013).

Most anodes are cast in molds on rotating wheels or discs at
the smelter. Improved control of anode weight and dimensions
has occurred over the years through automation. Anodes once
received at the refinery are almost always prepared by a machine
that presses the anodes flat, turns the ears slightly to improve
their ability to hang straight in the cell, and mills the contact
surface where the ears will touch the intercell contact bar.

Anodes are usually placed in an empty cell following
draining, removal of slimes, and cleaning. Some newer facili-
ties place anodes using automated cranes, while older plants
use manual cranes. Most tankhouses now employ polymer
concrete for the cell material while older facilities use lined
concrete. After the anodes are placed, cathodes are inserted
between the anodes, although in some facilities, cathodes and
anodes are inserted together. Finally, the electrolyte is returned
to the cell. Once the cell (or section of cells) reaches a specific
temperature (varies by operation), the cell is electrified and
electrorefining commences.

An anode cycle is typically 21-28 days depending on the
thickness of the anode and the current density employed. Each
anode cycle produces two or three crops of cathodes. Some
residual anode material is removed from the cell at the end of
the electrorefining cycle to avoid parts of the anode breaking
free and falling to the bottom of the cell. In 2013, the average
amount of the residual anode material that was removed as
scrap after the process was completed was 13.7% (Moats et
al. 2013). The changing of cathodes and anodes, as well as the
cleaning of the cells, contributes to downtime and less than
100% time efficiency.

Anode composition can affect the performance of the
clectrorefinery. The average anode composition from the
2013 survey is presented in Table 2. During dissolution, more
noble elements (Au, Ag), compounds that dissolve slowly or
are insoluble (Cu,Se, nickel oxide [NiO], cassiterite [SnO,]),
and compounds that form by precipitation (antimony arsenate
[SbAsO,], PbSO,) form a slimes layer on the anode. These
slimes are valuable because of their gold and silver content,
but they are also a source of possible contamination of the
cathode. They are collected when the anodes are removed
from the cell and sent to a separate facility for processing.

Soluble elements that are less noble than copper (Ni, As,
Sb, Bi) and compounds that dissolve easily (cuprous oxide
[Cu,0]) report to the electrolyte. Dissolution of other ele-
ments and Cu,O increases copper and impurity levels that are
not balanced by the cathode deposition. This requires a contin-
ual bleed of electrolyte to remove excess copper from solution
and other impurities such as Ni, As, Sb, and Bi. Copper is lib-
erated or removed from the bleed stream by electrowinning in
a process referred to as /iberation. Liberation is typically con-
ducted in stages to decrease the copper content of the electro-
lyte bleed stream. In the last stage when copper concentrations
are low, As, Sb, and Bi are co-deposited. The contaminated
product from the last liberation stage is returned to a smelter
for reprocessing. During the last stage of liberation, the pro-
duction of arsine gas is possible, which requires monitoring
and the use of either hooded cells or cells placed outside. Ni
is recovered at several plants by evaporation or precipitation
after liberation. Black acid (solution after liberation) or acid
recovered by ion exchange is returned to the electrorefinery as
makeup acid.

Arsenic, antimony, and bismuth are considered problem
elements from a hygiene (As) or contamination (Sbh, Bi) per-
spective. The problems related to antimony and bismuth are
mitigated if the anodes contain an As/(Sb + Bi) molar ratio =2
(Krusmark et al. 1995; Noguchi et al. 1995; Wesstrom 2014).
Maintaining the proper ratio is believed to mitigate the prob-
lems associated with Sb and Bi by promoting the precipita-
tion of SbAsO, and bismuth arsenate (BiAsO,) in the slimes
layer. Improper anode chemistry can lead to floating slimes,
pipe scaling, and anode passivation (Wesstrom 2014). If anti-
mony concentration becomes too high in the electrolyte, it
will lead to the formation of colloidal particles that can float
on the electrolyte surface. These floating slimes often become
incorporated in the cathode, leading to nodulation and con-
tamination near the top of the cathode. These nodules become
a source of short circuits, which lower current efficiency. High
antimony levels can also lead to scale formation on cell walls
and pipes, which can cause flow issues within a plant.

Anode passivation is another potential problem. It is
caused by trying to dissolve the anode too fast relative the
chemistry of the anode, electrolyte composition, and tem-
perature. Anode passivation leads to uneven anode dissolution
and/or poor cathode deposits. Anode passivation can be allevi-
ated by operating at lower current density, higher temperature,
higher chloride concentration, or higher arsenic concentra-
tions in the anode (Moats and Hiskey 2010).

Cathodes are deposited for 7-14 days. Newer facilities
use stainless-steel sheets that are often referred to as mother
blanks, whereas older plants use very thin starter sheets of
copper as the cathodes on which the electrorefined copper
is deposited. Starter sheet cathode tankhouses usually plate
at lower current density (on average at 278 A/m?) for longer
times (10—14 days) at lower current efficiency (95.5%) than
stainless-steel cathode facilities (312 A/mZ, 5-7 days, 96.6%:;
Moats et al. 2013). For these economic reasons, many electro-
refineries have upgraded to stainless-steel cathodes over the
past two decades.

The high-purity (>99.99%) copper that deposits on the
cathode sheets is usually smooth and dense in plate or sheet
form with enough ductility to be harvested by automated
mechanical stripping. To achieve this, electrolysis parameters
are well controlled. These parameters include current den-
sity, temperature, electrolyte composition, electrolyte flow,
and the use of additives. Average current density at copper
electrorefineries in the 2013 survey was 310 A/m? (Moats et
al. 2013). This value has been increasing over the past two
decades. Some electrorefineries operate at 400 A/m? with the
use of parallel electrolyte flow (Mettop-BRX technology).
Electrolyte temperature and composition are monitored and
controlled through the use of heat-retention blankets or cell
covers, heat exchangers, and clectrolyte bleeding. Copper
electrolyte refineries typically operate near 65°C with an aver-
age electrolyte composition of 49 g/L. Cu, 173 g/L. H,S0, (sul-
furic acid), 5.5 g/L As, 0.3 g/L Sb, 0.2 g/L Bi, and 13.0 g/L
Ni. Glue, thiourca, chloride, and occasionally Avitone A
(a sodium alkyl sulfonate) are used as additives to control the
surface morphology and crystal structure.

In electrorefining, the flow of electrolyte is maintained
to ensure even flows to each cell, to provide additives at the
correct concentrations, and to ensure that there is no turbulent
flow, which would otherwise increase oxygen dissolution from
the air and reduce current efficiency because of the reduction
of oxygen at the anodes.
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Table 2 Average copper anode composition

Element Concentration
Cu 99.3 %
Ag 750 ppm
Au 30 ppm
S 30 ppm
Se 400 ppm
Te 110 ppm
As 890 ppm
Sb 350 ppm
Bi 180 ppm
Pb 1,170 ppm
Fe 60 ppm
Ni 2,040 ppm
(@] 1,460 ppm

Source: Moats et al. 2013

Lead

The electrorefining of lead by the Betts’ process is one of
the first large-scale usages of electrometallurgy with the first
refinery installed in 1902 at Trail, British Columbia, Canada.
It involves refining 96%-99% Pb anodes produced by pyro-
metallurgical methods to produce >99.99% lead. The main
advantages of the electrolytic route are (1) removal of bis-
muth, (2) production of high-purity lead, and (3) production
with minimal lead dusts and fumes. The main disadvantages
are (1) impurity removal/disposal from the residues and solu-
tion and (2) higher costs than pyrometallurgical refining
(Thornton et al. 2001). A thorough description of the process
is given by Gonzalez-Dominguez et al. (1991).

The Betts’ process involves the electrolytic dissolution of
lead from cast 200-300-kg anodes into the electrolyte. The
electrolyte is typically based on fluorosilicic acid (H,SiFg)
although a few plants use fluoroboric (HBF,) or sulfamic
(H;NSO3) acid. Both fluorosilicic and fluoroboric electrolyte
plants require adequate ventilation because of the potential
generation of toxic hydrogen fluoride fumes above the elec-
trolyte. Sulfamic electrolyte can decompose into ammonia
and sulfate, which can cause environmental issues. For these
reasons, the use of a less toxic electrolyte, such as methane-
sulfonic acid, has been investigated (Jin and Dreisinger 2016).

Pb*? is transported across the cell through the electrolyte.
Pb plates onto Pb starter sheets produced by a highly automated
process of rolled and embossed refined lead (15 ppm of Sb
is added to improve stiffness). Cathode morphology is con-
trolled by the proper levels of additives, temperature, and cur-
rent density.

Cast anodes are made of lead bullion. Anode microstruc-
ture is critical. A honeycomb structure with uniform size grains
surrounded by impurities is desired. As Pb electrolytically dis-
solves, a skeleton of slimes resembling a honeycomb remains.
Nonuniformity of the lead grains leads to nonadherences of
the slimes and uneven dissolution, which causes production
difficulties. Anode microstructure is strongly influenced by
As, Sb, Bi, and Ag. Slimes adhesion increases when Bi is
greater than 0.23%. Slimes adhesion increases when eutectic-
forming elements (As and Ag) are present. Water quench-
ing significantly improves slimes adhesion. Control methods

are used for cooling rates and casting techniques to produce
homogeneous properties (Gonzalez-Dominguez et al. 1991).

The use of fluorosilicic electrolyte is most widely prac-
ticed. Electrolyte composition is 0.2-0.5 M PbSiF (lead fluo-
rosilicate) and 0.5-0.8 M H,SiF; with milligrams-per-liter
concentrations of Bi, Cu, As, Sb, and Sn. The electrolyte tem-
perature is usually 40°C. Although noble elements are more
electrochemically noble, they can still electrochemically dis-
solve to a small extent. Au, Ag, Cu, Sb, Bi, and As report to
the anode slimes if the anode overpotential is controlled. The
slimes are treated to recover high-value elements and dispose
of low-value elements. Similar to copper electrorefining, lead
anodes contain oxide inclusions. Because the oxide inclusions
dissolve chemically, the apparent anode current efficiency,
which is based on the electrolytic and chemical dissolution
rates, is greater than 100%. This results in an increase of dis-
solved lead concentration in the electrolyte with time. Lead
concentration is controlled by electrowinning or precipitation.
The allowed concentrations of impurities depend on product
specifications. Plants operate under conditions to avoid dis-
solution of noble impurities. Impurities are removed from the
electrolyte by cementation on lead granules in a purification
column or electrodeposition in a separate electrolysis circuit.

Lead electrorefining is performed with current densities
of 120-230 A/m?, which produce cell voltages of 0.3-0.6 V.
Current efficiency is 90%—98%. The electrical energy con-
sumption is 120-195 kW-h/t. Lead is deposited for 4-7 days
in cells with 16-43 cathodes.

A flat smooth lead deposit is achieved by adding reagents
to the electrolyte. These additives increase the cathodic over-
potential, which is necessary to avoid rough and porous depos-
its. Glue, lignin sulfonate, and aloes are used. Glue is added
at rates of ~600 g/t. Lignin sulfonate is introduced at 200—
1.000 g/t. Aloes are added at the Trail operation at 170 g/t.
The Trail controls their operation by measuring overpotential
(Kerby and Jankola 1990). Betts’ lead electrorefining opera-
tional data is reported by Gonzalez-Dominguez et al. (1991).

Nickel

High-purity nickel is produced by electrorefining at a few
locations. Electrorefining is an older technology and has been
mostly supplanted by hydrogen reduction or electrowinning
as the preferred choices to produce commercial pure nickel.
Electrorefining of nickel starts with either matte or impure
nickel anodes. Impure metal anodes are used at Norilsk,
Russia; Pechenga, Russia; and Jilin, China (Crundwell et
al. 2011). An overview of the processes is given by Vignes
(2013). Historic details of both types of electrorefining are
provided by Boldt and Queneau (1967).

Typically, matte anodes are ~75% Ni, ~20% S with the
rest as impurities. Anodes are loaded into woven polypropyl-
ene bags and placed in a cell. Nickel starter sheets are placed
in a compartment between two adjoining anodes. The com-
partment is also covered with a woven cloth. A current density
of ~250 A/m? is applied to electrolytically corrode nickel from
the anodes and plate pure nickel metal on the starting sheet
cathodes. After approximately 10 days, the enlarged cathodes
are pulled and replaced with new starting sheets. Anodes are
replaced after 16-17 days. Anode scrap and corrosion prod-
ucts are processed to recover high-value elements, such as Ni,
Co, Cu, Ag, Au, and platinum group metals (PGMs). The solu-
tion inside the anode bag (i.e., anolyte) flows out of the cell
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and is purified and replenished in an electrolyte purification
plant before being returned to the cathode bags as pure catho-
lyte. The catholyte is returned to the cathode compartments in
such a way that flow is always away from the cathodes into
the anolyte, preventing catholyte contamination. Physically,
this is indicated by a head of catholyte in the cathode com-
partments above the anolyte. The reader is referred to Boldt
and Queneau’s (1967) seminal work, The Winning of Nickel,
for more details regarding the electrorefining of matte anodes.

Crude nickel anodes are made by casting after
pyrometallurgical reduction of nickel oxide. Electrorefining
occurs similarly as with nickel matte anodes. Typically,
cobalt, copper, iron, lead, zinc, and arsenic chemically and/
or electrochemically dissolve and report to the anolyte. These
are removed during anolyte treatment prior to the return of the
solution to the catholyte compartment. Silver, gold, and PGMs
remain as solids and collect in the slimes, which are processed
to recover these high-value elements.

Silver

The purpose of silver electrorefining is to (1) produce >99.9%
silver from an impure silver material and (2) collect all of the
gold and PGMs in the anode slimes for further processing and
eventual recovery. Pyrometallurgical methods typically pro-
duce doré with 98%-99.5% silver, The doré is cast into small
anodes, placed into anode bags, and then electrolyzed in either
a Moebius cell or Balbach-Thum cell. The silver dissolves
into a silver nitrate—sodium nitrate—nitric acid electrolyte. The
electrolyte will contain ~150 g/ Ag with a pH of 1.0-1.5 at
a temperature of ~35°C. The bags facilitate the collection of
the high-value slimes. Copper, lead, and palladium will accu-
mulate in the electrolyte. The electrolyte is treated once the
concentrations of these elements reach 10 g/L Cu, 10 g/L Pb,
or 1 g/l Pd. The electrolyte is processed to recover the silver
and then disposed (Habashi 1998).

Because of its high exchange current density, electro-
deposition of silver produces needles. These needles are peri-
odically broken either manually or automatically to avoid
short-circuiting the cell. The cells are designed to allow the
breaking of the needles. Moebius cells are more commonly
used now because they utilize less floor space and are easier
to mechanize. Schematic diagrams for Moebius and Balbach-
Thum cells can be found elsewhere (Habashi 1998; Pletcher
and Walsh 1990). After removing the needles from the cell,
they are washed and melted to produce silver bullion bars.

Gold

Most gold bullion is pyrometallurgically refined using the
Miller chlorination process to produce 99.6% purity. For high-
purity gold (99.99%) needed for coinage, electrolytic refining
is required. Electrorefining of gold using the Wohlwill pro-
cess removes trace amounts of silver, copper, zinc, and PGMs.
Partially refined gold bullion anodes are electrolytically
corroded into 60°C, 80-100 g/L Au, 80-100 g/L HCI elec-
trolyte by the application of a current density of ~800 A/m?.
Impurities accumulate in the electrolyte or as anode sludge.
The electrolyte is bled and treated to recover the gold. The
sludge is recycled back into pyrometallurgical refining. Gold
deposits at the cathode. The cathodes are washed with a hot
sodium thiosulfate solution to remove entrained impurities
(Marsden and House 2006).
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